三角函数的诱导公式有哪些 三角诱导公式

 

三角函数诱导公式

三角哗银函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种乱段宴线段的长度来定义。三角函数在研究三角形和圆燃猜等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

常用的三角函数诱导公式有以下几组:

公式1 :

设a为任意角,终边相同的角的同- -三角函数的值相等:

sin ( 2kπ+a) = sina

cos ( 2kπ+a) =Cosa

tan ( 2kπ+a) = tana

cot ( 2kπ+a) = cota

公式二:

设a为任意角, π+a的三角函数值与x的三角函数值之间的关系:

sin(π+a) = - sina

cos( π+a) = - COSa

tan( π+a) = tana

cot(π+a) = cota

万能公式:

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}

t采唱an(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

利用诱导公式化简求值时的原则:1、“负化正”,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数。2、“大化小”,利用k·360°+α(k∈Z)的诱导公式将大于360°的角的三角函数化为0°到360°的三角函数。3、“小化锐”,将大于90°的角化为0°到90°的角的三角函数。4、“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得。

三角函数的诱导公式有哪些

诱导公式三角函数基本公式如下:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈Z)的三角函数值:

(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

和角公式:

sin ( α ± β ) = sinα · cosβ ± cosα · sinβ

sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ

cos ( α ± β ) = cosα cosβ ∓ sinβ sinα

tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )